Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface.

نویسندگان

  • Kai Hsieh
  • Anthony H C Huang
چکیده

Tapetosomes are abundant organelles in tapetum cells during the active stage of pollen maturation in Brassicaceae species. They possess endoplasmic reticulum (ER)-derived vesicles and oleosin-coated lipid droplets, but their overall composition and function have not been established. In situ localization analyses of developing Brassica napus anthers revealed flavonoids present exclusively in tapetum cells, first in an ER network along with flavonoid-3'-hydroxylase and then in ER-derived tapetosomes. Flavonoids were absent in the cytosol, elaioplasts, vacuoles, and nuclei. Subcellular fractionation of developing anthers localized both flavonoids and alkanes in tapetosomes. Subtapetosome fractionation localized flavonoids in ER-derived vesicles, and alkanes and oleosins in lipid droplets. After tapetum cell death, flavonoids, alkanes, and oleosins were located on mature pollen. In the Arabidopsis thaliana mutants tt12 and tt19 devoid of a flavonoid transporter, flavonoids were present in the cytosol in reduced amounts but absent in tapetosomes and were subsequently located on mature pollen. tt4, tt12, and tt19 pollen was more susceptible than wild-type pollen to UV-B irradiation on subsequent germination. Thus, tapetosomes accumulate ER-derived flavonoids, alkanes, and oleosins for discharge to the pollen surface upon cell death. This tapetosome-originated pollen coat protects the haploidic pollen from UV light damage and water loss and aids water uptake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maize tapetum employs diverse mechanisms to synthesize and store proteins and flavonoids and transfer them to the pollen surface.

In anthers, the tapetum synthesizes and stores proteins and flavonoids, which will be transferred to the surface of adjacent microspores. The mechanism of synthesis, storage, and transfer of these pollen-coat materials in maize (Zea mays) differs completely from that reported in Arabidopsis (Arabidopsis thaliana), which stores major pollen-coat materials in tapetosomes and elaioplasts. On maize...

متن کامل

Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor.

During evolution, genomes expanded via whole-genome, segmental, tandem, and individual-gene duplications, and the emerged redundant paralogs would be eliminated or retained owing to selective neutrality or adaptive benefit and further functional divergence. Here we show that tandem paralogs can contribute adaptive quantitative benefit and thus have been retained in a lineage-specific manner. In...

متن کامل

The major olive pollen allergen (Ole e I) shows both gametophytic and sporophytic expression during anther development, and its synthesis and storage takes place in the RER.

The distribution of Ole e I (the major olive pollen allergen) and its transcripts was investigated in the anther from premeiotic stages until the dehiscent pollen stage. Crude protein extracts were analyzed by immunoblotting and probed with a monoclonal antibody to Ole e I. The protein, with three variants, was found to accumulate from the early microspore stage onwards. In addition to the prev...

متن کامل

Pollen, Tapetum, and Orbicule Development in Colletia paradoxa and Discaria americana (Rhamnaceae)

Tapetum, orbicule, and pollen grain ontogeny in Colletia paradoxa and Discaria americana were studied with transmission electron microscopy (TEM). The ultrastructural changes observed during the different stages of development in the tapetal cells and related to orbicule and pollen grain formation are described. The proorbicules have the appearance of lipid globule, and their formation is relat...

متن کامل

Studies on heteromorphic self-incompatibility systems: the cytochemistry and ultrastructure of the tapetum of Primula obconica.

This paper describes the cytochemistry and ultrastructure of the developing tapetum in Primula obconica, a plant with a heteromorphic, sporophytic self-incompatibility system. The tapetum is of the secretory type and cytochemical tests have shown that when it breaks down proteinaceous (esterase) and lipidic components are deposited on the developing pollen grains. Acid phosphatase, a marker of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2007